Recommendations for Setting Biological Goals: Natural-Origin Chinook & Steelhead

Panel Interpretation of Charge:

- How should we evaluate status and trends and population-level responses of Chinook salmon and steelhead to flow and habitat restoration actions?
 - Inform progress towards biological goals
 - Inform adaptive management decisions
 - Cumulative rather than action-specific responses

Recommendations for Setting Biological Goals: Natural-Origin Chinook & Steelhead

Criteria for Evaluating Population Viability & Response to Actions

Density Dependence

Stock Recruitment framework

Defining productivity

Accounting for density dependence

Quantifying Benefits of Restoration Actions

Hatchery effects

Time Frame

Data Requirements & Limitations

Key Recommendations

Criteria for Measuring Population Viability and Response to Actions

Viable Salmonid Population Metrics

Abundance (natural origin)

Number of Recruits (catch & spawners) Number of juveniles

Productivity

Smolts (juveniles) per spawner

Adult recruits per spawner (R/S)

Intrinsic (maximum) productivity at low density

(viable if R/S > 1)

Criteria for Measuring Population Viability and Response to Actions

Viable Salmonid Population Metrics

Diversity

Life history diversity (size, age, timing of outmigrants; adult age)

Genetic diversity

Diversity provides population stability, resilience, and persistence

Habitat diversity supports population diversity

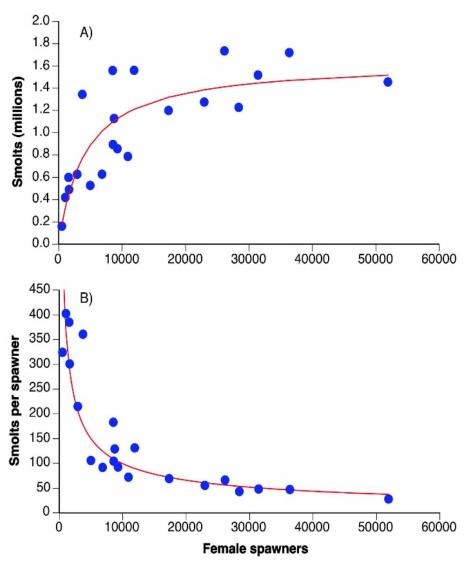
Spatial Structure

Geographic distribution of meta-population Reduces risk of catastrophic events/failure.

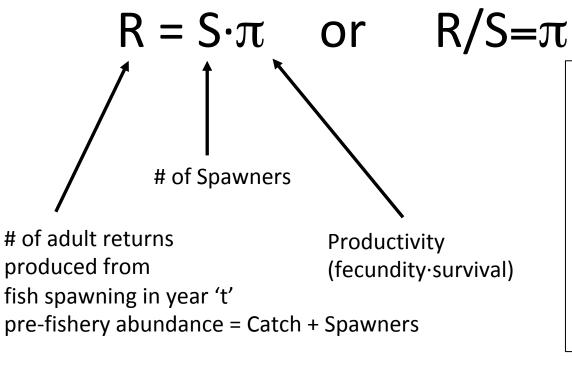
Density Dependence

Critical for population resilience at low abundance

Previously thought to be minimal in ESA-listed salmonids


Especially important for hatcherysupplemented populations

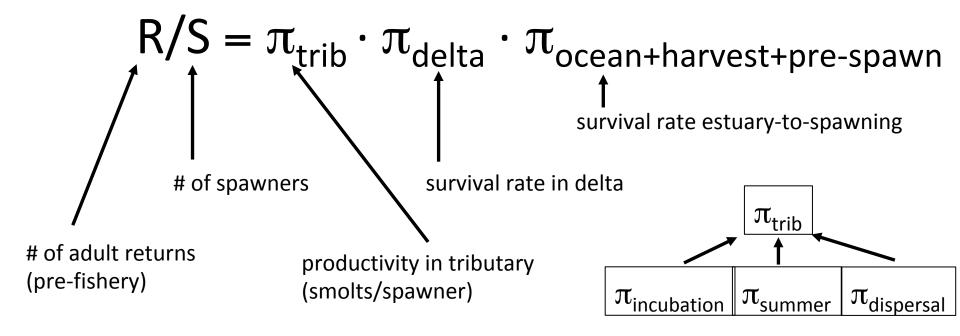
Spawners needed to achieve viability can be estimated if SAR is known


Relationship can inform restoration actions involving capacity and productivity

Spawner-Recruit relationships reflect density dependence

Snake R spring/summer Chinook salmon

Productivity

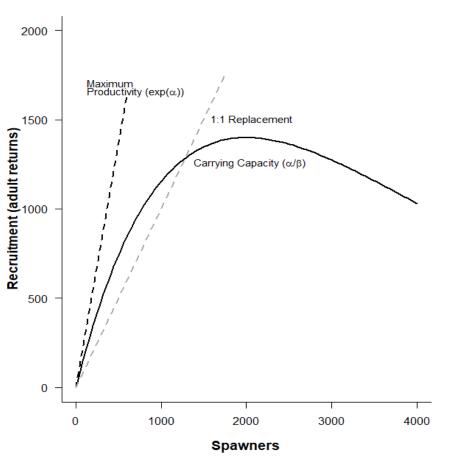


 π >1 for population to grow

Productivity (recruits/spawner)

- Determines rate of recovery
- Sustainable exploitation rate
- Determined in part by spatial and life history diversity, and determines abundance in long-term

Productivity by Life Stage


 $\pi_{\text{trib}} \cdot \pi_{\text{delta}} \cdot \pi_{\text{ocean+harvest}} \! > \! 1$ for population to grow

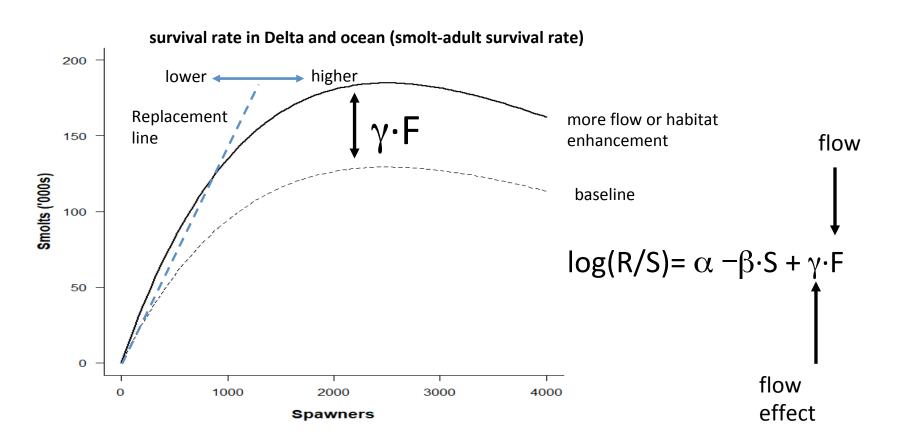
Effect of Harvest

$$\text{R/S} > 1 = \pi_{\text{trib}} \cdot \pi_{\text{delta}} \cdot \pi_{\text{ocean}} \cdot \underbrace{(1 \text{-U})}_{\text{Proportion of return not harvested}}$$

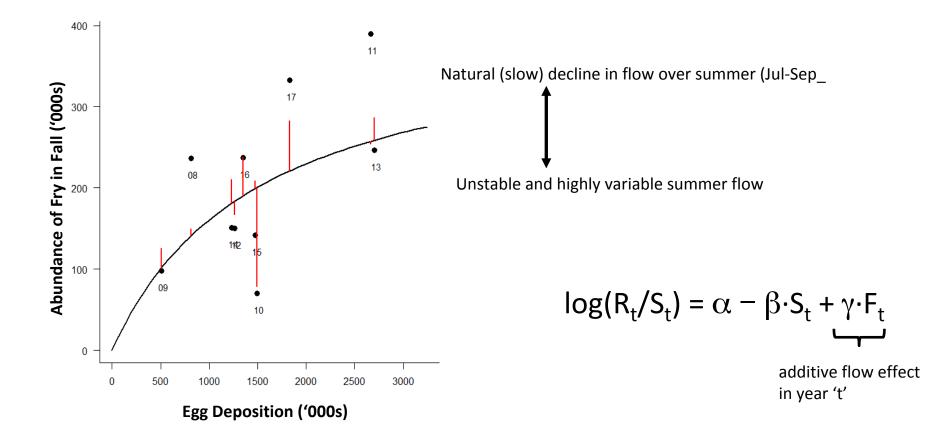
Required tributary productivity to allow population growth depends on delta and ocean survival rate, and allowable exploitation rate

Stock-Recruitment Relationships account for Density Dependence in Survival Rates

$$R = S \cdot exp(\alpha - \beta \cdot S)$$


$$\log \text{ of productivity }$$

$$exp(\alpha) = \pi$$


density-dependent term

$$\log(R/S) = \alpha - \beta \cdot S$$

Including Effects of Flow or Habitat on Tributary Spawner-Smolt Stock-Recruitment Relationship

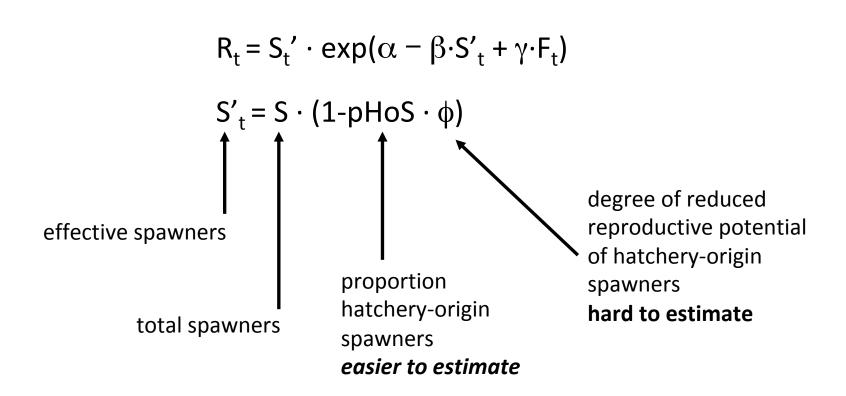
Example of Tributary Stock-Recruitment Relationship

Separation of Flow vs. Habitat Construction

What you would like to be able to do: Estimate separate flow and habitat effects

$$log(R_t/S_t) = \alpha - \beta \cdot S_t + \gamma \cdot F_t + \delta \cdot H_t$$

$$additive flow effect$$


$$in year 't'$$

additive habitat effect

What you will probably be able to estimate: A combined flow-habitat effect

$$log(R_t/S_t) = \alpha - \beta \cdot S_t + \gamma \cdot F_t \cdot H_t$$
additive flow & habitat effect in year 't'

Separation of Hatchery and Flow or Habitat Effects

Factors Influencing Reliability of Flow-Habitat Effectiveness Monitoring

- Accurate and precise estimates of escapement, pHoS, smolt production, harvest, etc. will reduce observation error and make it easier to detect flow and habitat effects
- Experimental design
 - # of replicate years under each treatment
 - magnitude of treatments (% unimpaired, habitat, water year type)
 - 4-5 generations (15-20 years) to get a somewhat reliable answer based on juveniles or adult returns
 - sequencing of flow and habitat construction, changes in hatchery practices

Data Requirements

Salmon "brood table":

Progeny produced by parent spawners

Run reconstruction needed to create brood tables for each population

Brood table data used to create spawner-recruit relationships

Number of returning progeny by age							
Brood	Parent ⁻			·8 p8,	, , , , ,	Total	Return per
Year	Spawners	Age 1.2	Age 1.3	Age 2.2	Age 2.3	progeny	spawner
1980	22,505,268	2,539,067	1,385,037	8,291,131	364,137	12,597,313	0.6
1981	1,754,358	745,205	188,998	962,185	147,140	2,048,789	1.2
1982	1,134,840	492,725	385,823	514,201	111,122	1,509,246	1.3
1983	3,569,982	9,267,005	2,995,170	1,111,077	386,132	13,775,451	3.9
1984	10,490,670	2,578,693	1,438,443	17,559,242	1,663,051	23,287,185	2.2
1985	7,211,046	1,051,305	959,016	14,851,621	1,382,907	18,314,833	2.5
1986	1,179,322	652,917	868,159	1,539,424	1,007,436	4,114,460	3.5
1987	6,065,880	4,715,392	2,193,831	4,276,086	329,082	11,648,130	1.9
1988	4,065,216	3,035,792	1,958,434	3,698,337	453,907	9,205,714	2.3
1989	8,317,500	1,860,644	1,072,383	18,335,389	3,276,621	24,800,933	3.0
1990	6,970,020	1,635,680	890,767	22,046,414	1,626,784	26,298,686	3.8
1991	4,222,788	2,192,435	1,181,693	1,008,516	236,952	4,637,250	1.1
1992	4,725,864	651,583	300,635	751,845	162,224	1,875,603	0.4
1993	4,025,166	1,087,088	873,116	683,919	477,949	3,130,470	0.8
1994	8,355,936	2,023,631	1,062,072	3,920,261	247,105	7,303,050	0.9
1995	10,038,720	7,737,952	2,098,056	677,133	96,802	10,636,782	1.1
1996	1,450,578	547,556	1,651,818	24,302	27,656	2,260,607	1.6
1997	1,503,732	159,365	140,516	342,017	173,309	816,242	0.5
1998	2,296,074	375,942	422,187	343,819	93,558	1,254,499	0.5
1999	6,196,914	1,010,493	278,782	5,815,772	208,249	7,378,782	1.2
2000	1,827,780	1,884,652	1,264,567	742,843	367,259	4,261,658	2.3
2001	1,095,348	633,259	2,051,098	819,689	901,131	4,421,265	4.0
2002	703,884	2,456,932	1,265,247	142,426	10,246	3,881,251	5.5
2003	1,686,804	3,595,854	1,186,181	31,390	129,764	4,966,281	2.9
2004	5,500,134	4,797,865	2,931,164	2,634,426	554,819	10,918,274	2.0
2005	2,320,332	1,254,243	2,033,447	4,527,248	1,754,061	9,582,839	4.1
2006	3,068,226	3,663,815	2,701,997	1,197,115	746,641	8,319,191	2.7
2007	2,810,208	1,542,520	1,852,364	6,972,782	2,379,818	12,795,126	4.6
2008	2,757,912	2,679,158	1,930,847	1,247,528	679,005	6,577,118	2.4
2009	2,266,140	740,947	1,001,605	9,725,832	1,396,254	12,889,440	5.7
2010	4,207,410	6,053,034	5,545,200	13,231,078	679,369	NA	NA
2011	2,264,352	2,846,209	1,768,634	2,289,956	525,629	NA	NA
2012	4,164,444	7,924,673	2,820,675	423,296	NA	NA	NA
2013	2,088,576	4,001,282	NA	NA	NA	NA	NA
2014	4,458,540	NA	NA	NA	NA	NA	NA
2015	7,341,612	NA	NA	NA	NA	NA	NA
2016	4,462,728	NA	NA	NA	NA	NA	NA
2017	3,163,404	NA	NA	NA	NA	NA	NA

Example based on Kvichak sockeye salmon. Not all ages shown.

Spawning Escapement

Total counts of male and female spawners

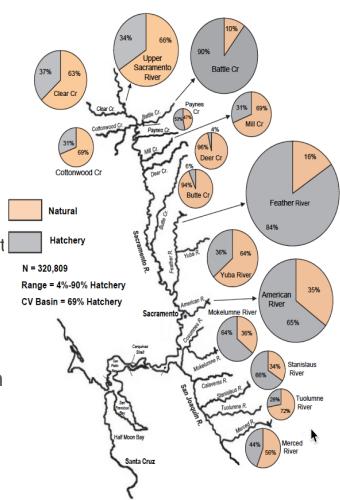
Each watershed

Each run-type (spring, fall, winter, etc.)

GrandTab

Age composition

pHOS (proportion of hatchery origin spawners)


Each watershed (Palmer-Zwahlen et al. 2018, Willmes et al. 2018)

Age composition

Estimates for earlier years

Steelhead: data appear to be insufficient for natural origin steelhead.

Limits development of biological goals for natural-origin steelhead

Population Specific Catch Estimates

Fall, Winter, Spring Run Chinook Salmon
Commercial, sport, Tribal
Natural Origin
Hatchery Origin
Age composition

CWT-Based estimates for hatchery fish

(Barnett-Johnson et al. 2007, Kormos et al. 2012, Palmer-Zwahlen et al. 2013, 2018)

Natural origin estimates for each population?

Could use run reconstruction techniques

Tributary Outmigrant Estimates

Total population estimates

Fry, fingerling, smolts (mark-recapture)

Run-type (winter, spring, fall)

Origin (natural, hatchery)

Single population metric to estimate smolts per spawner Juvenile size at age

Juvenile Survival through the Delta

Acoustic tag studies (large hatchery salmon bias; proportional to wild?)

Coded-Wire-Tag studies (smaller hatchery salmon bias)

Incorporate survival index into quantitative model (π_{deo})

Viable Salmon Population criteria (VSP)

Abundance & productivity

Most intuitive

Develop from stock-recruit relationship

Diversity & spatial structure

Stability & resilience

Productivity

Intrinsic (maximum) productivity

Spawner to smolt stage (reflects watershed actions)

productivity needed given smolt to adult survival

Spawner to adult

Viable if ≥ 1

Productivity estimated from spawner-recruitment model

Trend in intrinsic productivity estimated with state-space approach to evaluate if conditions are improving

Is population viable if all hatchery fish excluded?

Abundance

Adults or progeny produced by spawning parents

Number of spawners leading to maximum production of juveniles or future adults

Diversity

pHOS: proportion of hatchery-origin salmon on spawning grounds

Age composition

Both metrics needed to estimate productivity and abundance

Spatial Structure

Increase number of spawning populations

Action Effectiveness Monitoring:

Covariate stock-recruitment estimation approach for quantifying benefits for salmon and steelhead associated with flow, habitat improvements/restoration, and changes in pHOS

Timeframe for progress:

A few decades, depending on data quality, experimental design, and environmental variability

Timeframe could be shorter if specific life stages targeted with specific effort

Some General Conclusions

Ecosystem

Develop quantitative biotic and abiotic goals separately for the estuary and tributary rivers

Both structural and functional quantitative metrics should be assessed for ecosystems

Other Fishes

Evaluate both native and non-native fish species

Eight approaches are presented for other fishes that may be used to set and evaluate progress towards biological goals

Salmonids

Use Viable Salmonid Population (VSP) criteria, especially productivity & abundance within stock-recruit framework Incorporate pHOS into VSP analyses